Since 2016, the Materials Physics Group has developed a variety of applications in the field of functional materials. In 2017 a new company called Advanced Materials Development (AMD) was founded, based on the Sussex background IP, to support the commercialisation of these applications and resulted in the development of a platform technology based on conductive inks. Sustained industry engagement by the AMD team with key strategic partners in the consumer, automotive, and chemical sectors, including government organisations, is leading to a wider awareness and adoption of this novel environmentally friendly technology.
The graphene exfoliation and dispersion technology were originally conceived as part of a fundamental materials physics research project funded by European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 642742 (2016-2019). The focus of this activity and ongoing development work since, was to study the incorporation of graphene and other nanomaterial inks in different larger scale arrays for device applications where electrical and/or thermal conductivity is needed. The rheology and formulation of these inks can be easily modified and can, therefore, be tuned and deposited on a range of substrates using commercial printing techniques such as ink-jet, screen and flexographic.
Through the direct funding from AMD, the team has also developed a methodology to scale the production of these inks. The technical details of these advances are outlined in two AMD filed patents (a third in process). This technology is being further developed into variants for stretchable transparent conductors, electrically conducting pressure sensitive adhesives, molecular traceability tags and thermal actuators. In previous work by the Sussex team, the motion sensors have received a great deal of interest from various media bodies including the BBC Radio 4 Inside Science (interview at the Sussex physics labs and on the BBC website), the Times, the Financial Times, the Irish Times and others.
Of particular interest, the inks have been developed as coatings for replacement of metals in RFID systems for a leading UK retailer and several leading RFID manufacturers. – a development that could have far-reaching environmental benefits and a huge far reaching environmental and commercial impact. The developed antennas are believed to have the potential to be competitive with incumbent technologies for end-users looking for an ecological solution; AMD are currently negotiating to supply graphene-based antenna for early 2020.
To support the design, manufacture and testing of these antenna devices, underpinning metrologies are needed which can characterise parameters such as local conductivity, isotropy and electric current flow patterns. This work will substantially enhance the value of these applications and facilitate further exploitation of the ink technology. AMD intends to progress this through the engagement of the SPQR team’s quantum microscope which has been developed and constructed as part of the UK National Quantum Technologies Programme (UKNQT) with the Quantum Technologies Hub for Sensors and Metrology. This will also provide the needed required enhancement by revealing factors such as early signs of failure under mechanical stress or other environmental factors.